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Abstract

Capturing and maintaining geometric interactions among different body parts is
crucial for successful motion retargeting in skinned characters. Existing approaches
often overlook body geometries or add a geometry correction stage after skeletal
motion retargeting. This results in conflicts between skeleton interaction and ge-
ometry correction, leading to issues such as jittery, interpenetration, and contact
mismatches. To address these challenges, we introduce a new retargeting frame-
work, MeshRet, which directly models the dense geometric interactions in motion
retargeting. Initially, we establish dense mesh correspondences between characters
using semantically consistent sensors (SCS), effective across diverse mesh topolo-
gies. Subsequently, we develop a novel spatio-temporal representation called the
dense mesh interaction (DMI) field. This field, a collection of interacting SCS
feature vectors, skillfully captures both contact and non-contact interactions be-
tween body geometries. By aligning the DMI field during retargeting, MeshRet not
only preserves motion semantics but also prevents self-interpenetration and ensures
contact preservation. Extensive experiments on the public Mixamo dataset and our
newly-collected ScanRet dataset demonstrate that MeshRet achieves state-of-the-art
performance.

1 Introduction

Skinned character animation is prevalent in virtual reality [15], game development [20], and various
other fields. However, animating these characters often presents significant challenges due to
differences in body proportions between the motion source and the target character, leading to issues
such as loss of motion semantics, mesh interpenetration, and contact mismatches. Consequently,
motion retargeting is essential to adjust for these discrepancies in body proportions. This process is
crucial for maintaining the integrity of the source motion’s characteristics in the animation of the
target character.

Motion retargeting presents challenges due to the complex interactions among character limbs and
the wide range of body geometries. Accurately preserving these interactions is crucial, as incorrect
interactions can result in mesh interpenetration and contact mismatches. Prior research has typically
addressed these interactions from two perspectives: skeleton interactions and geometry corrections.
Early methods [1, 28, 14] employ cycle-consistency to implicitly align skeleton interaction semantics,
yet they do not address the complexities of geometric interactions between different body parts.
Villegas et al. [27] introduced mesh self-contact modeling; however, their approach does not extend
to non-contact interactions. More recently, Zhang et al. [31] implemented a two-stage pipeline that
first aligns skeleton interaction semantics and then corrects geometric artifacts. Nonetheless, the
inherent conflict between preserving skeleton interaction semantics and correcting geometry leads to
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jittery movements, severe interpenetration and imprecise contacts. Zhang et al. [29] subsequently
proposed adding a stage that aligns visual semantics with a visual language model, but this requires
detailed pair-by-pair finetuning due to the loss of spatial information when projecting 3D motion into
2D images.

To resolve the conflict between skeleton interaction and geometry correction, we propose a new
approach: focusing solely on dense geometric interaction for motion retargeting. Character animation
videos, rendered from the skinned mesh, rely on geometric interactions to shape user perception.
Skeleton interaction, in contrast, merely represents a simplified, sparse form of geometric interaction.
Therefore, maintaining correct interactions between different body part geometries not only preserves
motion semantics but also prevents mesh interpenetration and ensures contact preservation, as
illustrated in Figure 1.

Given the significance of geometric interactions, we propose a new framework, named MeshRet, for
skinned motion retargeting. In contrast to earlier methods that adjust skeletal motion retargeting
outcomes, our approach models the intricate interactions among character meshes without depending
on predefined vertex correspondences.

The design of MeshRet necessitates several technical innovations. Initially, there is a requirement for
dense mesh correspondence across different characters. Drawing inspiration from the medial axis
inverse transform (MAIT) [21], we have devised a technique, termed semantically consistent sensors
(SCS), to automatically derive dense mesh correspondence from sparse skeleton correspondence.
This technique enables us to sample a point cloud of sensors on the mesh to represent each character.
Following this, to illustrate dense mesh interaction between body parts, we employ interacting mesh
sensor pairs, maintaining generality. These pair-wise interactions are encoded within a novel spatial-
temporal representation termed the Dense Mesh Interaction (DMI) field. The DMI field adeptly
encapsulates both contact and non-contact interaction semantics. Finally, we proceed to learn a
motion manifold that aligns with the target character geometry and the source motion DMI field.

To align our evaluation process more closely with real animation production, we gathered an in-
the-wild motion dataset, termed ScanRet, characterized by abundant contact semantics and minimal
mesh interpenetration. ScanRet consists of 100 human actors ranging from bulky to skinny, each
performing 83 motion clips scrutinized by human animators. The MeshRet model is trained on both
the ScanRet dataset and the widely used Mixamo [2] dataset. We assessed our method across a large
variety of motions and a diverse array of target characters. Both qualitative and quantitative analyses
show that our MeshRet model significantly outperforms existing methods.

To summarize, we present the following contributions:

• We introduce MeshRet, a pioneering solution that facilitates geometric interaction-aware
motion retargeting across varied mesh topologies in a single pass.

• We present the SCS and the novel DMI field to guide the training of MeshRet, effectively
encapsulating both contact and non-contact interaction semantics.

• We develop ScanRet, a novel dataset specifically tailored for assessing motion retarget-
ing technologies, which includes detailed contact semantics and ensures smooth mesh
interaction.

• Our experiments demonstrate that MeshRet delivers exceptional performance, marked by
accurate contact preservation and high-quality motion.

2 Related Work

Skeletal motion retargeting Motion retargeting seeks to preserve the characteristics of source
motions when transferring them to a different target character. Skeletal motion retargeting primarily
addresses the challenge of differing bone ratios. Gleicher [8] initially formulated motion retargeting
as a spatio-temporal optimization problem, using source motion features as kinematic constraints.
Subsequent researches [5, 7, 13] have focused on optimization-based approaches with various con-
straints. However, these methods, while requiring extensive optimization, often yield suboptimal
results. Consequently, recent studies have explored learning-based motion retargeting algorithms.
Jang et al. [10] trained a motion retargeting network using a U-Net [25] architecture on paired motion
data. Villegas et al. [28] introduced a recurrent neural network combined with cycle-consistency [34]
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Figure 1: Comparison with the existing method. Contrary to the earlier retargeting-correction
approach [31], which suffer from internal contradictions leading to interpenetration, jitter, and contact
mismatches, our pipeline leverages the DMI field to accurately model complex geometric interactions.

for unsupervised motion retargeting. Lim, Chang, and Choi [14] propose to learn frame-by-frame
poses and overall movements separately. Aberman et al. [1] develop differentiable operators for
cross-structural motion retargeting among homeomorphic skeletons. However, these methods gen-
erally neglect the geometry of characters, leading to frequent contact mismatches and severe mesh
interpenetrations.

Geometry-aware motion retargeting Previous studies have generally processed character ge-
ometries through two approaches: contact preservation and interpenetration avoidance. Lyard and
Magnenat-Thalmann [18] developed a heuristic optimization algorithm to maintain character self-
contact, while Ho and Shum [9] introduced a spatio-temporal optimization framework to prevent
self-collisions in robot motion retargeting. Jin, Kim, and Lee [11] employed a proxy volumetric
mesh to preserve spatial relationships during retargeting. Subsequently, Basset et al. [4] combined
both attraction and repulsion terms in an optimization-based method to avoid interpenetration and
preserve contact. However, these methods necessitate per-vertex correspondence and involve costly
optimization processes. More recently, Villegas et al. [27] attempted to retarget skinned motion
through optimization in a latent space of a pretrained network, although their method does not accom-
modate non-contact interactions. Zhang et al. [31] implemented a two-stage pipeline that initially
aligns skeleton interaction semantics and subsequently corrects geometric artifacts. Nevertheless,
the inherent conflict between maintaining skeleton interaction semantics and correcting geometry
often results in jittery movements and imprecise contacts. In a later study, Zhang et al. [29] added a
stage that aligns visual semantics using a visual language model, but this approach requires extensive
pair-by-pair fine-tuning due to the loss of spatial information when projecting 3D motion into 2D
images.

Existing geometry-aware motion retargeting methods either require expensive optimization or employ
multi-stage strategies for skeleton and geometry semantics, resulting in a contradiction between
stages that often leads to unsatisfactory results. In contrast, our method processes both contact and
non-contact semantics using a dense mesh interaction field in a single stage.

3 Method

3.1 Overview

We introduce a novel geometric interaction-aware motion retargeting framework MeshRet, as illus-
trated in Figure 2. Unlike previous methods that either overlook character geometries [1, 28, 14]
or apply geometry correction after skeleton retargeting [31, 29], our framework directly addresses
dense geometric interactions with the Dense Mesh Interaction (DMI) field. This provides a detailed
representation of the interactions within skinned character motions, preserving motion semantics by
preventing mesh interpenetration and ensuring precise contact preservation.

Motion & geometry representations Assume the motion sequence has T frames and the character
has N skeletal joints. The motion sequence m is represented by the global root translation X ∈ RT×3

and the local joint rotation Q ∈ RT×N×6, where we adopt the 6D representation [33] for the joint
rotations. The rest-pose geometry G of the character is represented by the rest-pose mesh O and the
rest-pose joint locations J ∈ RN×3.
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Figure 2: Overview of the proposed MeshRet. The pipeline begins with the extraction of the DMI
field using sensor forward kinematics, denoted as Fk, and pairwise interaction feature selection,
represented by Fc. This DMI field, in conjunction with geometric features derived from Fg, is fed
into an encoder-decoder network. The network predicts the target motion sequence, which is aligned
with the target character’s geometry and the original DMI field.

Task definition Given the source motion sequence mA, and the geometries GA and GB of the
source and target characters in their T-poses, our objective is to generate the motion mB for the target
character. This process aims to retain essential aspects of the source motion, including its semantics,
contact preservation, and the avoidance of interpenetration.

Following the definition of the task, our MeshRet model initially derives Semantically Consistent
Sensors (SCS) S ∈ RS×4×3, which provide dense geometric correspondences essential for the
retargeting process, where S = Fs(G). S captures the sensor location and the sensor tangent space
matrix, facilitating an enhanced perception of the geometry surface. Subsequently, we conduct
sensor forward kinematics (FK) and pairwise interaction extraction to generate the source DMI field
DA = Fd(mA,SA), where DA ∈ RT×K×L×P . Here, K is the number of SCS in the DMI field, L
represents a hyper-parameter of feature selection, and P indicates the feature dimension of the DMI.
Lastly, a transformer-based network [26] ingests mA, DA, SA, and SB, and predicts a target motion
sequence mB that aligns with the target character’s geometry and the source DMI field. The entire
pipeline is denoted as follows:

mB = Fr(mA,DA,SA,SB) (1)

3.2 Semantically consistent sensors

To facilitate dense geometric interactions, our MeshRet framework necessitates establishing dense
mesh correspondence between source and target characters. Previous studies have typically derived
correspondence from vertex coordinates [32], virtual sensor [30] or through a bounding mesh [11];
however, these methods are confined to template meshes sharing identical topology, such as MANO
[24] or SMPL [17]. Villegas et al. [27] suggested determining vertex correspondence using nearest
neighbor searches on predefined feature vectors. Nevertheless, this approach often lacks precision
and brevity, resulting in inaccurate contact representations and substantial optimization burdens.

In this study, we introduce Semantically Consistent Sensors (SCS) that are effective across various
mesh topologies while ensuring precise semantic correspondence. Our approach draws inspiration
from the Medial Axis Inverse Transform (MAIT) [21]. We conceptualize the skeleton bones of
each character as approximate medial axes of their limbs and torso. For each bone, a MAIT-like
transform is applied to generate the corresponding SCS. This involves casting rays from the bone
axis across a plane perpendicular to it. The origin parameter l and direction parameter ϕ of the
rays, combined with the bone index b, establish the semantic coordinates of the SCS. The semantic
coordinates describe connection between the sensor and the skeleton bones. A sensor is deemed valid
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Figure 3: Left: Illustration of the method to derive a sensor feature s from the semantic coordinate
(b, l, ϕ) across different characters. The red line represents the projected ray. The feature s encom-
passes the sensor’s location and its tangent space matrix. Right: The DMI field effectively captures
both contact and non-contact interactions. Red lines represent dt,i,j in the DMI field. In the second
example, the body sensors (yellow points) are located in the tangent plane of the hand sensors (blue
points), signifying a contact interaction.

if its ray intersects the mesh linked to the bone; otherwise, it is considered invalid. Through this
method, we establish a dense geometric correspondence based on sparse skeletal correspondence. The
procedure for deriving SCS is illustrated in Figure 3. Given a unified set of SCS semantic coordinates
{(b1, l1, ϕ1), (b2, l2, ϕ2), · · · , (bK , lK , ϕK)}, we can derive SCS feature S = {s1, s2, · · · , sK} for
each character. Further details can be found in Algorithm 1.

3.3 Dense mesh interaction field

To effectively represent the interactions between character limbs and the torso, we have developed
the DMI field. Based on SCS detailed in Section 3.2, the DMI field comprehensively captures both
contact and non-contact interactions across different body part geometries. Utilizing the DMI field
allows for dense geometry interaction-aware motion retargeting, thereby eliminating the need for a
geometry correction stage.

Sensor forward kinematics For a given motion sequence, denoted as m, we initially conduct
forward kinematics (FK) on S to derive sensor features S1:T ∈ RT×S×4×3. Each St encompasses
the locations and tangent matrices for S sensors at frame t. The FK transformation for an individual
sensor is expressed as:

sti =

N∑
n=1

ω(pi)nGn(Q
t) · si, (2)

where Gn(Q
t) ∈ SE(3) is the global transformation matrix for bone n, derived from its local rotation

matrix, and ω(pi)n represents the linear blend skinning (LBS) weight for sensor si, determined
through barycentric interpolation of its adjacent mesh vertices.

Pairwise interaction feature Next, we model the geometric interactions as pairwise interaction
features between sensors. Ideally, for each frame, we obtain a comprehensive DMI field, Dt

,
representing pairwise vectors across K2 sensor pairs:

dt,i,j = t−1
i (pt

j − pt
i), (3)

Dt
= {(dt,i,j , bi, bj , li, lj , ϕi, ϕj)}j=1:S

i=1:S , (4)
where ti ∈ R3×3 is the tangent matrix if sensor i, and dt,i,j represents the relative position of target
sensor j in the tangent space of observation sensor i. Dt

is composed of two components: the relative
position of the sensor pair and the semantic coordinates of both the observation and target sensors.
The use of semantic rather than spatial coordinates is essential, as it obviates the need for actual
sensor positions, thereby making DMI suitable for motion retargeting applications.

However, Dt ∈ RS×S×P exhibits quadratic growth with respect to S because it includes S2 sensor
pairs, rendering it impractical when managing thousands of sensors. To address this, we implement
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two sparsification strategies for Dt
. Initially, we restrict interactions to critical body parts only, such

as arm-torso, arm-head, arm-arm, and leg-leg, rather than between all sensor pairs, thereby restricting
our focus to K observation sensors. Subsequently, for each observation sensor, we select L target
sensors from each relevant body part, where L is a predetermined hyper-parameter. Specifically, we
empirically choose L/2 nearest and L/2 furthest target sensors. We find that proximate sensor pairs
are crucial for minimizing interpenetration and maintaining contact, while distant pairs delineate the
overall spatial relationships between body parts, as shown in Figure 3. These strategies lead to the
formulation of the final DMI field D ∈ RK×L×P , with selected sensor pairs indicated by the sparse
DMI mask Msrc ∈ RS×S shown in Figure 2.

3.4 Geometry interaction-aware motion retargeting

To avoid the conflict between skeleton interaction and geometric correction, the proposed MeshRet
employs the DMI field to model geometric interactions directly. As shown in Figure 2, MeshRet
initially extracts the DMI field DA from the source motion sequence mA, as described in Section 3.3.
The field DA encapsulates interactions among various body parts within the source motion, encom-
passing both contact and non-contact interactions, further depicted in Figure 3. The DMI field,
composed of sensor pair feature vectors, possesses the unordered characteristics of a point cloud.
Consequently, we implement a PointNet-like architecture [23] for our DMI encoder, which is divided
into two components: the per-sensor encoder and the per-frame encoder. Given DA ∈ RT×K×L×P ,
the per-sensor encoder initially processes it as T ∗K separate point clouds, producing representations
Hs

A ∈ RT×K×Dmodel for each observation sensor, where Dmodel denotes the feature dimension. Sub-
sequently, the per-frame encoder generates per-frame representations Hf

A ∈ RT×Dmodel by encoding
these T point clouds.

Since DMI field DA lacks geometric information about characters, we introduced a geometry
encoder Fg to extract geometric features from their SCS. For each sensor, we form a feature vector
by concatenating its rest-pose feature si with its semantic coordinates (bi, li, ϕi). The resultant
geometric features are represented as CA ∈ RSA×C for character A and CB ∈ RSB×C for character B.
The semantic coordinates of sensors act as intermediaries linking the DMI field to character geometry.
The geometry encoder employs a PointNet-like architecture [23] to transform the geometric features
C into a geometric latent code Hg ∈ RDmodel .

The transformer-based retargeting network processes input features including the source DMI feature
Hf

A, source joint rotation QA, source geometry latent Hg
A, and target geometry latent Hg

B. Specifically,
the encoder processes Hf

A and Hg
B, while the decoder processes QA and Hg

A. The latents Hg
A and

Hg
B serve as the initial tokens in the sequence, enabling both the encoder and decoder to operate

over a sequence of length T + 1. The output sequence’s final T frames are represented as Q̂B. Root
translation processing is performed in accordance with Zhang et al. [31].

Due to the lack of paired ground-truth data, we employ the unsupervised method described by Lim,
Chang, and Choi [14]. Our network utilizes four loss functions for training: reconstruction loss,
DMI consistency loss, adversarial loss, and end-effector loss. Supervision signals are derived from
the source motion. We maintain geometric interactions by aligning the source DMI field DA with
the target DMI field D̂B. The target DMI field D̂B is generated by first applying sensor forward
kinematics to Q̂B, followed by selecting sensor pairs using the target sparse DMI mask Mtgt ∈ RS×S .
This mask, Mtgt, is derived by excluding invalid sensors of the target character from Msrc. The DMI
consistency loss is quantified as the cosine similarity loss between pair-wise relative positions in D̂B
and DA:

Ldmi =
1

T

T∑
t=1

K∑
k=1

L∑
l=1

c(k, l)
dt,k,l

A · d̂t,k,l
B

||dt,k,l
A ||2 · ||d̂t,k,l

B ||2
, (5)

where c(k, l) takes the value 1 if sensor pair (k, l) is valid in both Msrc and Mtgt, and 0 otherwise.
The reconstruction loss serves as a regularization mechanism to minimize motion alterations during
retargeting, defined as follows:

Lrec = ||Q̂B −QA||22. (6)
To facilitate realistic motion retargeting, a discriminator, denoted as δ(·), is employed. The adversarial
loss is subsequently defined as:

Ladv = EQ∼preal [log δ(Q)] + EQ∼p(Q̂B)
[log(1− δ(Q))]. (7)
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We observed that the global orientation of end-effectors significantly influences user experience.
Consequently, we introduced an end-effector loss to promote consistent orientations of end-effectors
in the retargeted motion.

Lef =
1

T |X |

T∑
t=1

∑
i∈X
||R(Qt

A, i)−R(Q̂t
B, i)||, (8)

where R(·) transforms local joint rotations into global rotations for joint i along the kinematic chain
and X represents the set of end-effectors. Our MeshRet is trained by:

Ltotal = λrecLrec + λdmiLdmi + λadvLadv + λefLef. (9)

4 Experiments

4.1 Settings

Datasets We trained and evaluated our method using the Mixamo dataset [2] and the newly curated
ScanRet dataset. We downloaded 3,675 motion clips performed by 13 cartoon characters from the
Mixamo dataset contains, while the ScanRet dataset consists of 8,298 clips executed by 100 human
actors. Notably, the Mixamo dataset frequently features corrupted data due to interpenetration and
contact mismatches. To overcome these issues, we created the ScanRet dataset, which provides
detailed contact semantics and improved mesh interactions, with each clip being scrutinized by
human animators. The training set comprises 90% of the motion clips from both datasets, involving
nine characters from Mixamo and 90 from ScanRet. Our experiments tested the motion retargeting
capabilities between cartoon characters and real humans, aligning closely with typical retargeting
workflows. During inference, we adopted four data splits based on character and motion visibility:
unseen character with unseen motion (UC+UM), unseen character with seen motion (UC+SM),
seen character with unseen motion (SC+UM), and seen character with seen motion (SC+SM), as
delineated by Zhang et al. [31]. We present the average results across these splits. Additional details
available in Appendix A.

Implementation details The hyper-parameters λrec, λdmi, λadv, λef, and L were empirically set
to 1.0, 5.0, 1.0, 1.0, and 20, respectively. We use {0, 1, · · · , Nbody − 1} × {0, 0.25, 0.5, 0.75} ×
{0, 0.5π, π, 1.5π} as the SCS semantic coordinates set, where Nbody = 18 is the number of body
bones and × represents the Cartesian product. We employed the Adam optimizer [12] with a learning
rate of 10−4 to optimize our network. The training process required 36 epochs. For further details,
please refer to Appendix C.

Evaluation metrics We assess the effectiveness of our method through three metrics: joint accuracy,
contact preservation, and geometric interpenetration. Joint accuracy is quantified by calculating the
Mean Squared Error (MSE) between the retargeted joint positions and the ground-truth data provided
by animators in ScanRet. This analysis considers both global and local joint positions, normalized by
the character heights. Contact preservation is evaluated by measuring the Contact Error, defined as
the mean squared distance between sensors that were originally in contact in the source motion clip.
Geometric interpenetration is determined by the ratio of penetrated limb vertices to the total limb
vertices per frame. Further details are available in Appendix B.

4.2 Comparison with state-of-the-arts

Qualitative results Figure 4 demonstrates the performance of skinned motion retargeting across
characters with diverse body shapes, where the motion sequences are novel to the target characters
during training. Most baseline methods, except R2ET [31], fail to consider the geometry of characters,
leading to significant geometric interpenetration and contact mismatches. Unlike these methods,
R2ET [31] includes a geometry correction phase after skeleton-aware retargeting. However, this
creates a conflict between the two stages, resulting in oscillations in R2ET’s outcomes, which manifest
as alternating contact misses and severe interpenetrations, as shown in the first two rows. Additionally,
these oscillations appear variably across different frames within the same motion clip, producing
jittery motion, as illustrated in Figure 1 and Figure 8. A further limitation of R2ET is its neglect of
hand contacts. In contrast, our method employs the innovative DMI field to preserve such detailed
interactions, such as those observed in the “Praying” pose in the third row. Demo video available.
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Source Copy PMnet SAN R!ET Ours

Figure 4: Qualitative comparison with baseline methods. Our method ensures precise contact
preservation and minimal geometric interpenetration.

Table 1: Quantitative comparison with between our method and state-of-the-arts. Mixamo+ represents
the mixed dataset of Mixamo and ScanRet. MSElc denotes the local MSE.

Metric MSE↓ MSElc↓ Contact Error↓ Penetration(%)↓
Dataset ScanRet ScanRet Mixamo+ ScanRet Mixamo+ ScanRet

Source - - - 0.234 3.04 1.37
Copy 0.026 0.006 1.702 0.387 5.26 2.16

PMnet [14] 0.130 0.029 2.716 0.890 5.23 2.23
SAN [1] 0.049 0.011 2.432 0.627 4.95 1.72
R2ET [31] 0.063 0.017 2.209 0.589 4.21 2.01

Ourscls 0.048 0.013 0.800 0.426 3.35 1.73
Oursfar 0.045 0.010 1.642 0.610 5.37 1.77
Oursdm 0.048 0.010 2.568 0.797 4.69 1.78
Ours 0.047 0.009 0.772 0.284 3.45 1.59

Quantitative results Table 1 presents a comparison between our methods and state-of-the-arts.
We initially measure the joint location error using MSE and MSElc on ScanRet. The ground truth
in ScanNet is established by human animators. Our observations indicate that human animators
typically retarget motions by initially replicating joint rotations and subsequently modifying frames
that display incorrect interactions. Conversely, our method modifies the entire motion sequence,
resulting in a higher MSE compared to the Copy strategy. Nevertheless, MSE remains a valuable
auxiliary reference. In comparison to PMnet [14], R2ET [31], and SAN [1], our method achieves
MSE reductions of 65%, 29%, and 8%, respectively. These results demonstrate that our approach
more closely aligns with the outputs produced by human animators.

As shown in Table 1, PMnet [14] and SAN [1], exhibit high interpenetration ratios and contact errors
due to their neglect of character geometries. R2ET [31] effectively reduces interpenetration through a
geometry correction stage; nonetheless, it still encounters high contact errors stemming from conflicts
between the retargeting and correction stages. Our approach explicitly models geometry interactions
and thereby achieves low contact error and penetration ratio, illustrating the effectiveness of our
proposed MeshRet in generating high-quality retargeted motions with detailed contact semantics
and smooth mesh interactions. Additionally, we observe that retargeting using the mixed Mixamo+
dataset is more challenging than with the ScanRet dataset, attributable to significant body shape
variations between cartoon characters and real person characters.
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𝐎𝐮𝐫𝐬𝐒𝐨𝐮𝐫𝐜𝐞 𝐎𝐮𝐫𝐬𝒄𝒍𝒔 𝐎𝐮𝐫𝐬𝒇𝒂𝒓 𝐎𝐮𝐫𝐬𝒅𝒎 𝐎𝐮𝐫𝐬𝐒𝐨𝐮𝐫𝐜𝐞 𝐎𝐮𝐫𝐬𝒄𝒍𝒔 𝐎𝐮𝐫𝐬𝒇𝒂𝒓 𝐎𝐮𝐫𝐬𝒅𝒎

Figure 5: Qualitative comparison of ablation studies. A red circle highlights areas of interpenetration,
while a red rectangle identifies errors in non-contact semantics.

4.3 Ablation Studies

We conducted ablation studies to demonstrate the significance of pairwise interaction feature selection
and the implementation of DMI similarity loss. Initially, we evaluated the performance of a model
trained exclusively with the nearest L sensor pairs, denoted as Ourscls, and another model trained
solely with the farthest L sensor pairs, referred to as Oursfar. As indicated in Table 1 and Figure 5,
Oursfar compromises contact semantics and leads to significant interpenetration, while Ourscls also
exhibits inferior performance. This outcome suggests that proximal sensor pairs are essential for
minimizing interpenetration and preserving contact, whereas distal pairs provide insights into the non-
contact spatial relationships among body parts. Further, we investigated the effect of incorporating a
distance matrix loss, as proposed by Zhang et al. [31], on our sensor pairs, designated as Oursdm.
The results imply that the distance matrix loss fails to yield meaningful supervisory signals, likely
because distance is non-directional and insufficient to discern the relative spatial positions among
numerous sensors.

Table 2: Human preferences between our method and baselines.

Methods Semantics Preservation Contact Accuracy Overall Quality
Copy 20.7% v.s. 79.3%(Ours) 22.7% v.s. 77.3%(Ours) 18.7% v.s. 81.3%(Ours)
PMnet [14] 2.7% v.s. 97.3%(Ours) 5.3% v.s. 94.7%(Ours) 1.3% v.s. 98.7%(Ours)
SAN [1] 9.3% v.s. 90.7%(Ours) 15.3% v.s. 84.7%(Ours) 7.3% v.s. 92.7%(Ours)
R2ET [31] 14.6% v.s. 85.4%(Ours) 16.0% v.s. 84.0%(Ours) 13.3% v.s. 86.7%(Ours)

4.4 User study

We conducted a user study to assess the performance of our MeshRet model in comparison with the
Copy strategy, PMnet [14], SAN [1], and R2ET [31]. Fifteen sets of motion videos were presented
to participants, each consisting of one source skinned motion and five anonymized skinned results.
Participants were requested to rate their preferences based on three criteria: semantic preservation,
contact accuracy, and overall quality. Users were recruited from Amazon Mechanical Turk [3],
resulting in a total of 600 comparative evaluations. As indicated in Table 2, approximately 81% of
the comparisons favored our results. Details can be found in Appendix D

5 Conclusion

We introduce a novel framework for geometric interaction-aware motion retargeting, named MeshRet.
This framework explicitly models the dense geometric interactions among various body parts by
first establishing a dense mesh correspondence between characters using semantically consistent
sensors. We then develop a unique spatio-temporal representation, termed the DMI field, which
adeptly captures both contact and non-contact interactions between body geometries. By aligning
this DMI field, MeshRet achieves detailed contact preservation and seamless geometric interaction.
Performance evaluations using the Mixamo dataset and our newly compiled ScanRet dataset confirm
that MeshRet offers state-of-the-art results.

Limitations The primary limitation of MeshRet is its dependence on inputs with clean contact;
motion clips exhibiting severe interpenetration yield poor outcomes. Consequently, it is unable to
process noisy inputs effectively. Future efforts will focus on enhancing its robustness to noisy data.
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A Dataset Details

ScanRet details The primary motivation for collecting the ScanRet dataset stemmed from two
main concerns. First, the data quality in the Mixamo [2] dataset was relatively low, suffering from
significant issues such as interpenetration and contact mismatch. Second, the Mixamo dataset
exclusively contained cartoon characters, whose body type distributions differed markedly from those
of real human motion capture actors. In response, we developed the ScanRet dataset. We recruited
100 participants, evenly split between males and females, representing common ranges of height
and BMI. Each participant underwent a 3D scan to create a T-pose mesh. We intentionally did not
collect texture information for the body or face to protect privacy. Subsequently, we used motion
capture equipment to build a library of 83 actions characterized by extensive physical contact. We
enlisted human animators to map each action onto the 100 T-pose meshes, ensuring both semantic
integrity and correct physical contact were maintained. All participants and animators received fair
compensation. After discarding some invalid data, we compiled a total of 8,298 motion data entries.
The ScanRet dataset is designed to simulate data obtained from real human motion capture, such as
the MoSh [19, 16] algorithm, thus enhancing the realism of our evaluation process in the context of
actual animation production workflows.

Mixamo ScanRet

Figure 6: Left: Characters of varying body types in the Mixamo dataset do not always maintain
reasonable hand contact during clapping actions. Right: In our ScanRet dataset, characters of diverse
body types consistently maintain appropriate hand contact while performing the same clapping
actions.

Data splits We collected motion data for 13 characters from the Mixamo website, totaling 3,675
motion sequences, with each character having approximately the same number of sequences. The
characters are: Aj, Amy, Kaya, Mousey, Ortiz, Remy, Sporty Granny, Swat, The Boss, Timmy, X Bot,
and Y Bot. Among them, Ortiz, Kaya, X Bot, and Amy were not encountered by the network during
training. Overall, our training set included motion data for 9 Mixamo characters and 90 randomly
selected characters from the ScanNet dataset, where 90% of the motion sequences was randomly
chosen from both datasets. Details regarding the train/test split for specific motion sequences and
characters are provided in the code.

B Evaluation metric details

We evaluate the performance of our method from three perspectives: joint accuracy, contact preserva-
tion, and geometric interpenetration. In terms of joint accuracy, we calculate the Mean Squared Error
(MSE) between the ground-truth joint positions Xgt and the retargeted joint positions X̂ , normalized
by the character’s height h:

MSE =
1

h
||Xgt − X̂||22 (10)

Previous work [31] assessing the accuracy of self-contact measurements merely utilized the distance
between hand vertices and the body surface to determine contact presence. Such experimental metrics
fail to accurately reflect the precision of the contact location. Therefore, we adopted a metric similar
to the vertex contact mean squared error (MSE) proposed by Villegas et al. [27], termed “Contact
Error”. Specifically, we first identified sensor pairs where the distance between hand and body sensors
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in the source action was less than the arm’s diameter dsrc. We then located the same sensor pairs in
the retargeted motion. If the distance between these sensor pairs in the retargeted motion exceeded
that in the source action, we calculated the MSE of the distance differences; otherwise, the contact
error was zero. The formula is as follows:

Contact Error =

{
(||dt,k,l

A ||2 − ||d̂t,k,l
B ||2)2, if||dt,k,l

A ||2 > ||d̂t,k,l
B ||2

0, otherwise,
(11)

where dt,k,l
A indicates the contact sensor pairs with ||dt,k,l

A ||2 < dsrc.

For geometric interpenetration, we assess the percentage of interpenetration, calculated as the ratio of
penetrated vertices to the total vertices per frame. A lower ratio signifies reduced interpenetration. In
our evaluation, we calculate the interpenetration ratio between arms (including hands) and the body.

Penetration =
Number of penetrated arm vertices

Total number of arm vertices
. (12)

C Implementation Details

SCS details As introduced in Section 3.2, we establish semantic correspondences between character
meshes with different topologies using semantically consistent sensors. Specifically, given the
semantic coordinates (b, l, ϕ) of a sensor, we can identify semantically consistent sensor positions on
the meshes of different roles and obtain the feature vectors of the sensors. This process is detailed in
Algorithm 1.

Algorithm 1: Derive Semantically Consistent Sensors from Semantic Coordinate

Input: Mesh O, joint locations J ∈ RN×3, bone index b ∈ {0, 1, · · · , N}, origin parameter
l ∈ [0, 1), direction parameter ϕ ∈ [0, 2π)

Output: Sensor feature s ∈ R4×3

iparent ← bone_parent_joint(b), ichild ← bone_child_joint(b);
xparent ← J[iparent], xchild ← J[ichild];
o← (1− l)xparent + lxchild ; /* Ray origin */
dforward ← forward_direction(O) ; /* Face forward direction */
dbone ← normalize(xchild − xparent) ; /* Bone unit direction vector */
dother ← dforward × dbone;
n← cos(ϕ)dforward + sin(ϕ)dother ; /* Ray direction */
B← bone_mesh(O,b) ; /* Bone associated mesh */
r← ray(o,n);
p← ray_mesh_intersection(B, r);
if p ̸= ∅ then

t← tangent_matrix(xp,B);
s← concat(p, t);

else
s← 0;

end

Network architecture The network architectures of both our DMI Encoder and Geometry Encoder
resemble the structure of PointNet. However, since all our data is inherently situated within the
canonical space, we have eliminated the T-Net from PointNet to reduce network complexity. Before
being input into the encoder, sensor features pass through a sensor group embedding layer, which
converts the bone index b into an 8-dimensional embedding vector. This embedding vector is updated
during training. The Geometry Encoder consists of six PointNet layers with Dmodel set at 256,
and there is a distinct Geometry Encoder for the body, head, arms, and legs. The DMI Encoder
comprises a per-sensor encoder and a per-frame encoder, each built with six PointNet layers, with
each interaction pair having its own encoder. Specific interaction pairs include: [(Left Arm), (Right
Arm, Head, Torso)], [(Right Arm), (Left Arm, Head, Torso)], [(Left Leg), (Right Leg, Torso)], and
[(Right Leg), (Left Leg, Torso)]. The Motion Encoder is a multilayer perceptron (MLP). Both the
Transformer Encoder and Transformer Decoder have eight layers, with the number of heads set to
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Figure 7: User interface presented to participants during the user study.

four and the feed-forward size to 256. Between the Transformer Encoder and Transformer Decoder,
we employ an alignment mask proposed by Fan et al. [6], which ensures that each frame feature
in the decoder attends only to the corresponding DMI frame and initial token, thereby aligning the
network’s output motion sequence with the input features.

Training details We implemented our network using PyTorch [22], running on a machine equipped
with an NVIDIA RTX A6000 GPU and an AMD EPYC 9654 CPU. The dataset was uniformly
processed at a frame rate of 30 fps. During training, we randomly clipped a sequence of 30 frames
from the dataset. The target character was set to be the same as the source character with a 50%
probability, and different with a 50% probability, selected randomly from the dataset. On our system,
training for 36 epochs required approximately 40 hours. During inference, our MeshRet model can
achieve performance exceeding 30 fps.

D User study details

We recruited participants via the Amazon Mechanical Turk [3] platform to partake in a user study.
As shown in Figure 7, during each session, subjects were presented with one source video and two
retargeted motion videos: Video A and Video B. Participants were asked to watch all three videos
and then compare Video A and Video B. At the conclusion of the viewing, they were requested to
answer the following three questions:

1. Which video better matches the source motion in terms of the overall meaning and intent of
the motion?

2. Which video has more accurate and detailed motion? Look for less self-interpenetration and
better self-contact precision.
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3. Considering all factors, which video do you think is better overall?

For each question answered, participants received a compensation of $0.04. We collected 600
comparison results in the end.

E Additional results

𝑡 − 1 𝑡 𝑡 + 1
𝑡 − 1 𝑡 𝑡 + 1 𝑡 − 1 𝑡 𝑡 + 1

Source R!ET Ours

Figure 8: Left: We visualized three consecutive frames within an motion sequence. It is evident
that while there was no jitter in the motion source, significant jitter occurred in the t-th frame of the
R2ET [31] results, which was not the case with our method. Right: We visualize the corresponding
right-hand height for this segment of the sequence. The results indicate that the jitter in the R2ET
output was pronounced.

Motion jitter comparison To better illustrate the jitter issue present in the results from the
R2ET [31] method, we visualized consecutive frames generated by R2ET and our method in Figure 8,
and provided a line graph depicting the variations in height of the right-hand joint over time. These
results demonstrate that R2ET is adversely affected by contradictions between skeletal retargeting and
geometry correction phases, leading to significant motion jitter. In contrast, our method successfully
avoids this problem.

Source OursZhang et al.Source OursZhang et al. Source OursZhang et al.

Figure 9: Qualitative comparison with Zhang et al. [29].

Qualitative comparison with Zhang et al. [29] Since Zhang et al. [29] did not open-source their
code, we were unable to conduct a complete and fair comparison of their method with ours in our
experiments. However, we endeavored to locate several examples presented in their paper and applied
our MeshRet to the same motion sequences. The comparative results are displayed in Figure 9. As
observed in these examples, our method maintains the semantic integrity of the source motions,
and it performs better in the Fireball case (the second motion sequence shown). This indicates that
our method can achieve, and even surpass, the performance of their approach without the need for
pair-by-pair fine-tuning.

Metrics across different data splits Tables 3 and 4 present the contact error and penetration ratio
of our method compared to the baseline method across four different data splits. A consistent pattern
observed is that performance improves for seen characters or motions. It is evident that our method
outperforms the baseline across all data splits.

More cases We present additional cases to validate the effectiveness of our MeshRet. Figures 10,
11, 12, and 13 depict four motion sequences retargeted from the source character to distinct target
characters. These examples illustrate that our MeshRet is capable of generating high-quality motion
sequences on target characters with diverse body shapes. Please watch our demo video in the
supplementary material for a better comparison of the performance across different methods.
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Table 3: Contact errors of MeshRet and baselines across all data splits on Mixamo+.

Metric Contact Error↓
Data Split UC+UM SC+UM UC+SM SC+SM

Copy 1.462 1.188 2.477 1.682
PMnet [14] 1.826 1.774 4.134 3.132
SAN [1] 1.416 1.181 4.229 2.902
R2ET [31] 1.653 1.498 3.372 2.314

Ours 0.573 0.837 1.248 0.432

Table 4: Penetration ratios of MeshRet and baselines across all data splits on Mixamo+.

Metric Penetration(%)↓
Data Split UC+UM SC+UM UC+SM SC+SM

Copy 1.57 4.16 5.78 9.56
PMnet [14] 1.43 4.20 5.71 9.56
SAN [1] 1.81 5.52 4.66 7.81
R2ET [31] 1.54 4.66 4.92 5.71

Ours 1.55 2.63 4.60 5.04
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Figure 10: Snapshots of motion sequence 4 in ScanRet, retargeted from the source character to three
distinct characters.
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Figure 11: Snapshots of motion sequence 43 in ScanRet, retargeted from the source character to three
distinct characters.
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Figure 12: Snapshots of motion sequence 9 in ScanRet, retargeted from the source character to three
distinct characters.
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Figure 13: Snapshots of motion sequence 45 in ScanRet, retargeted from the source character to three
distinct characters.

F Broader impacts

Our work can provide animation professionals with enhanced results in motion retargeting, thereby
alleviating their workload and increasing productivity in fields such as virtual reality, game devel-
opment, and animation production. Regarding potential negative social impacts, we believe the
likelihood of misuse of our work is minimal. This is because our work is situated in the midstream
phase of the animation production pipeline, whereas privacy-invading forgeries, such as DeepFake,
primarily occur during the downstream rendering phase.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our results clearly support our main claims made in the abstract and introduc-
tion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not contain theoretical proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide experimental details in Section 4.1 and Appendix A. Code and
data will be made public if this paper gets accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The Mixamo dataset is accessible to the public. Our ScanRet dataset will also
be made public if this paper gets accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experimental settings in Section 4.1, Appendix A, and
Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We omitted error bars from our analysis due to the excessive computational
expense involved in enumerating all data splits. For example, calculating the penetration
ratio solely using ScanRet requires dozens of hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide resource requirements in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We removed textures from ScanRet to help preserve anonymity of participants.
We acquired consent from every participant. All the participants are fairly paid.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• Examples of negative societal impacts include potential malicious or unintended uses
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11. Safeguards
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Answer: [NA]
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package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Answer: [Yes]
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limitations, etc.
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14. Crowdsourcing and Research with Human Subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We provide these information in the Appendix D.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
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or other labor should be paid at least the minimum wage in the country of the data
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [Yes]

Justification: We performed our research in accordance with local laws.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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